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Abstract
The device-physics features of organic materials are presented from an
engineering point of view. By treating the organic material and the device
in a self-consistent manner the unique features of organic devices are revealed.
We discuss charge injection and transport relevant to (polymer/small molecule)
light-emitting diodes and field-effect transistors.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Charge injection and transport phenomena have been studied for many years and in many
material systems [1, 2] including that of organic semiconductors [3–6]. Many of these studies
are now being revisited [5, 7–12], as high-quality devices seem to emerge through the use
of new and better material [13]. Moreover, lately these materials have become commercially
available, thus opening the field to many research groups. Nevertheless, the field of organic
devices is still largely driven by the evolution and invention [14] of new materials and materials
composites [15, 16]. From the device-physics point of view this implies that one should
constantly consider a range of mechanisms in order to decide which (set) is most suitable
(‘intrinsic’) to describe the material under study. This above point is not only due to the
conjugated organic materials being ‘on the move’ but also due to them not being strictly
categorized, as the inorganic ones often are. Having the above in mind the purpose of this
paper is to consider mechanisms or phenomena that are more likely to occur in devices based
on materials available today. We limit ourselves to devices which are either light-emitting
diodes (LEDs) or field-effect transistors (FETs). In order to appeal to a wider audience we
also attempt to provide some background before presenting a few results. One of the main
messages arising from our study is that the mechanisms underlining the organic-material-based
device operation or the equations describing them are complex and non-linear.

The materials in question are known either as conjugated molecules (polymers) or as
organic semiconductors. The second term is more widely appealing; however, it sometimes
leads to confusion as one would be tempted to apply the very well established knowledge
and know-how of semiconductors (inorganic) and not consider the molecular nature of these
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materials. Just as one should apply special treatment or even terminology to quantum dots [17]
with respect to bulk crystalline materials, one should do the same with respect to molecular
materials (semiconductors). Namely, before applying a model/expression to describe the
performance of an organic device one should not only verify that the model is well established
but also that the details of the physical picture that underlie it can be fitted to organic materials
(as are known today).

To understand (reveal) the basic unique features of amorphous organic semiconductors one
often looks at the system dynamics through either Monte Carlo or statistical methods [6, 18].
In contrast to these, our goal here is to examine device-oriented phenomena and we assume, a
priori, that quasi-equilibrium is established faster then the timescale of interest. Before doing
so and as a matter of introduction we mention one of the features that has been established via
the use of dynamic methods—the dispersive transport. The term dispersive (non-equilibrium)
transport is often used in cases where the motion of the charges cannot be defined using only
two moments (D and µ) or, in other words, in cases where the mobility (µ) is an ill defined
concept [6, 19]. Such situations usually occur when the excitations continue to relax towards a
quasi-equilibrium state during the entire observation time [5, 6, 19, 20]. In the case of charge
excitation the observation time is usually the time taken to transport across the device under test.
Namely, the shorter the device (or the timescale) the more likely it is to encounter the dispersive
transport phenomena, and by varying the device length (timescale) one may also find a transition
from dispersive (relaxation or non-equilibrium) transport to non-dispersive transport [5, 21].
Extensive discussion of dispersive versus non-dispersive transport [5, 19, 20, 22–26] is beyond
the scope of this paper and we only wish to emphasize that the experimental observation of
one or the other is not only material dependent but also experimental-detail dependent (mainly
temperature-dependent timescales and/or spatial dimensions).

The sophisticated methods mentioned above are often applied within the low-density
limit [6, 18] so that the following hold.

(1) Boltzmann statistics can be used instead of Fermi–Dirac (FD).
(2) No blocking effects associated with state filling are present.
(3) Space charge effects are negligible.

Such low density may be found at the front tail of a charge distribution in a transient time-
of-flight measurement [27] or in transient light emission in LEDs. Beyond this transient edge
it is most likely that the low-density limit does not hold. Indeed, different conclusions have
been drawn when a mobility value was extracted from the charge-distribution front end (light
turn-on) [24] or when the body of the charge distribution (high-density part) was used [11].
The first method showed that the low-density charge-carrier front was subject to relaxation
effects (dispersive effects) and hence a true mobility could not be derived. When the body
of the charge distribution (high-density part) was used, a meaningful mobility value could
be extracted in either the time [11] or frequency [28, 29] domains. Namely, there is a real
motivation to look into density-related effects [30] in organic materials.

2. The physical picture

From the above introduction it is clear that one should attempt to use semiconductor device
models. However, it is well established that charge transport in disordered semiconductors
is not fully characterized by the conventional current continuity equations [5, 6, 22]. In the
context of organic semiconductors, it is accepted that the mobility is exponential in the square
root of the electric field [31]; however, this modification is also often found to be insufficient.
The deviation of the experimental results from the conventional current continuity equation
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description is typically explained either in the context of transport under non-equilibrium
conditions [19, 21] or with the aid of detailed Monte Carlo simulations [32] of hopping
transport. As already stated, a common feature of these detailed studies in that they do not
consider (or even preclude) effects associated with the charge density.

To introduce density-dependent effect we perform quasi-steady-state (or quasi-
equilibrium) analysis based on the shape of the density of states (DOS) being Gaussian, as
described in numerous papers by Bassler and co-workers [5, 18, 33, 34]. To this we add two
assumptions:

(1) the transport can be described using two moments only (mobility and diffusion coefficients)
and

(2) the charges are at quasi-equilibrium (no energy/momentum equation needed).

We start by examining whether such a semiconductor is non-degenerate or degenerate [30].
Namely, we examine whether one must use the full FD statistics

FD = 1

1 + exp
( E−Eµ

kT

) ,

or whether it is sufficient to use the simpler form of the Boltzmann (Bz) statistics,

Bz = exp

(
− E − Eµ

kT

)
.

To do so we plot in figure 1 the charge density (solid curve) as a function of the position of
the chemical potential or quasi-Fermi level (Eµ) relative to the centre of the Gaussian DOS
(σ = 7kT ) as calculated using the FD expression. For reference, the exponential decay (as in
Boltzmann statistics) is shown as a dashed line. The shape of the DOS is also shown (dotted
curve, right axis). We note that only when the excitation density is as low as 10−10 of the
effective DOS does the slope approach that expected from a Boltzmann factor.

Another way of looking at degeneracy or non-degeneracy is to plot the excitation (charge)
energy distribution as a function of the energy position of the chemical potential. In the non-
degenerate case the excitation energy distribution should be well separated from the chemical
potential. Figure 2 presents the energy distribution of charge carriers residing in a material
having a Gaussian DOS with a width σ/kT = 3. Again, the calculation is performed as a
function of the position of the quasi-Fermi level (chemical potential) relative to the centre of
the DOS. We note that as the quasi-Fermi level is lowered (charge density becomes lower),
the energy of the centre of the charge distribution goes down and saturates at a value of
〈EN→0〉/kT = (σ/kT )2 = 9. Only when the quasi-Fermi level is well below this saturation
energy can one treat the material as non-degenerate and approximate the distribution using
Boltzmann statistics. It is interesting to note that figure 2 of this paper agrees well with figure 2
in [18], where the time evolution of the charge energy distribution is shown to converge to
a value of 〈ε∞〉/kT = (σ/kT )2.. This is a first indication that our approach extends the
low-density methods to the high-density regime (when strong effects of the electric field can
be neglected). Using a calculation as in figure 2, one can deduce the maximum density that
is still within the low-density limit (Nmax ). For σ = 3kT Nmax ≈ 5 × 1016 cm−3 and for
σ = 7kT Nmax = 107 cm−3, assuming an effective DOS Ne f f = 1020 cm−3. In other words,
high-density effects may occur, in practical devices/materials, at rather low densities, well
before space–charge effects come into play. Namely, at all practical densities the amorphous
organic semiconductor is degenerate and the use of the Boltzmann factor is not strictly valid.
As we show below, this has an impact on charge transport and charge injection in devices.

We start by examining the charge transport and more specifically the phenomena of
anomalous spreading. As spreading is generally associated with diffusion we start by
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Figure 1. The normalized excitation density (solid curve) as a function of the energetic position of
the chemical potential. The dashed curve represents the slope expected from a Boltzmann factor.
For orientation, the shape of the DOS is also shown (dotted curve, right axis). The arrow drawn
parallel to the DOS shape illustrates the energy at which the DOS becomes more pronounced.
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Figure 2. The normalized charge density distribution as a function of energy for different quasi-
Fermi levels (chemical potentials). The DOS is Gaussian with σ = 3kT .

examining the generalized Einstein relation [2] using the appropriate DOS. The derivation
starts with the current-transport equation

Jh = µhnh E − Dh
d

dx
nh . (1)

Assuming no external force (Jh = 0), one can derive µh = Dh
1

nh

dnh
E dx = −Dh

1
nh

dnh
dV . Since we

have already required the existence of quasi-equilibrium we can replace the voltage difference
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Figure 3. The factor by which the classical Einstein relation is enhanced as a function of charge
density assuming three different widths of the Gaussian DOS.

with the difference in the quasi-Fermi-level (chemical potential) position and arrive at the
generalized Einstein relation:

µh = −Dh
1

nh

dnh

dE f
. (2)

It can be shown that whenever one can use the Boltzmann statistics to describe the
charge energetic distribution (low-density limit or non-degenerate limit), the original Einstein
relation µh = Dh

q
kT is recovered [2]. When the Boltzmann statistics is not a good enough

approximation and one must use the FD statistics (high-density or degenerate limit), then the
product 1

nh

dnh
dE f

must be re-evaluated [2].
A calculation based on equation (2) is shown in figure 3, where the factor by which the

ratio between diffusion and mobility coefficient is larger then kT/q is plotted as a function
of the carrier density (Ne f f = 1020 cm−3). The DOS was assumed to be Gaussian and
three different Gaussian widths were considered [35], representing three different degrees
of disorder [5, 25]. We note that a semiconductor having a Gaussian DOS with a width of
100 meV is considered degenerate at all practical densities (at room temperature). This effect
(degeneracy) is most pronounced near interfaces where charges tend to accumulate to high
densities. One such interface is the injection contact found in LEDs and another such interface
is the gate–insulator boundary found in FET configurations. We note that for such cases the
ratio can be up to an order of magnitude higher, thus proportionally enhancing the charge
distribution width (channel width in FETs). The more fundamental impact is that the transport
equations are highly non-linear (with the charge density), and hence theoretical treatments
based on Green-function analysis [36] (impulse response) have to be revisited.

An Einstein relation much higher than one has already been suggested before through
Monte Carlo simulations [27, 34] where the statistics of the device/material are built in a dy-
namic fashion. We believe that under equilibrium conditions our approach extends the statistics
of the Monte Carlo simulations from the low-density limit to the high densities used in the de-
vices considered here. Taking into account the results of figure 3, we propose that ‘anomalous’
spreading is largely due to high-density effects and not necessarily due to non-equilibrium ef-
fects. To test this hypothesis, we have simulated a time-of-flight measurement where a light
pulse is used to create a charge packet close to one contact and its motion through the device is
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Figure 4. The calculated current response to a light pulse in a time-of-flight experiment. The
device length is 1 µm, its cross section is 1 mm2, the applied reverse bias is 5 V and the mobility
µ = 10−6 cm2 V−1 s−1. The top solid curve was calculated for a narrow DOS and the bottom
solid curve for a wide DOS (σ = 7kT at RT). The dotted curve is the σ = 7kT curve normalized
to the σ < 1kT curve.

monitored via the current. Figure 4 shows such a calculation,where the current response is plot-
ted for two DOS widths. We note that for the wider DOS there is a pronounced decay near t = 0
and a broadened decay at the end of the response. These two features, derived under equilib-
rium conditions, are in good agreement with those reported through Monte Carlo simulations.

3. Implications for device operation

3.1. The space-charge-limited model at the injection interface

To examine the effect on LEDs we first revisit the known model, that is often applied to
organic light-emitting devices, of the space-charge-limited (SCL) [9, 10, 37, 38] conduction.
The conditions for the SCL model to hold require that the injected charge density near the
contact is high enough to screen the applied electric field near the contact. As most (non-
contaminated) conjugated materials are intrinsic, or contain a negligible amount of charge
density at zero applied voltage, it is very likely that the SCL conditions will hold for reasonably
good contact materials. Under these conditions, and assuming that the diffusion currents are
negligible, the analytic form of the SCL follows the Mott–Gurney relation [1]:

JSCL = 9

8
εµ

V 2

d3
. (3)

Here d is the device thickness (distance between contacts), V is the net applied voltage (the
applied minus the built in), ε is the permittivity and µ is the mobility. Within this framework
the electric field in the device follows [1]

E(x) =
√

2JSCL

εµ
(x + K ) (4)
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where x is the distance from the contact and K is given by K = JSCL ε

2N 2
0 e2µ

with N0 being the

injected charge density at the contact. When N0 is large enough K tends towards zero and
the SCL current–voltage relation holds. When equation (1) is valid the electric field at the
other contact reaches a maximum of Emax = 1.5 V

d . In practice equation (1) holds as long as
K � d . If, however, N0 is low (as in the case of high injection barrier), one may arrive at
the other extreme of K � d , where the electric field becomes constant throughout the device
and current–voltage relations become ohmic-like, and the current is then directly proportional
to the mobility Johm = N0eµ V

d . In the organic device community it is common to name the
regime where K � d bulk-limited conduction and that where K � d injection limited. Using
the above relations, developed in [1], one can show that bulk-limited conduction occurs when

JSCL ε

2e2µ
� d N2

0 (5)

or

9V 2ε2

16d4e2
� N2

0 . (6)

From the above we note that the maximum allowed barrier height is bias dependent (V ),
device dependent (d), temperature dependent (kT ) and material dependent. If we use the
Boltzmann approximation of

N0
∼= Ne f f exp

(
− �

kT

)
(7)

and assume V = 10 V, d = 100 nm, kT = 0.026 and Ne f f = 1021 cm−3, we find that for the
SCL current–voltage relation to hold � < 0.43 eV. For a Gaussian DOS this would correspond
to the contact Fermi level being ∼0.9 eV (35kT ) below the centre of the Gaussian (assuming
σ = 7kT as in figure 1). If one requires to be consistent with the simplified approach that
places the limit at about 0.43 eV below a band-edge one may use the asymptotic arrow in
figure 1 to define an ‘edge’ at about 0.4 eV (∼2σ ) below the Gaussian centre. We do not
rigorously justify such an edge position and it is done only for illustration purposes, though it
is similar to the method applied to absorption spectrum or STM measurements [39].

An interesting point to make with respect to the SCL treatments is that the result in
equation (4) shows that very close to the contact the electric field is negligible and hence the
current must be diffusive. Namely, the basic assumption used to derive the SCL relation does
not hold near the contact as the diffusion current is the main conduction mechanism at the
contact interface (contact is diffusion controlled!?). In large devices (d � 1 µm) the specifics
of the contact may probably be neglected. As most organic LEDs are only 100 nm thick,
it is not obvious that one can neglect the contact details. As there exists a wide spread in
the energy position of the conduction levels in organic polymers/molecules (see figure 5), the
effect of the contact or the energy barrier may become most important. To better understand
the applicability of the SCL theory we perform a numerical simulation [11, 40, 41] (minimal
assumptions) of a single-carrier charge injection device. The assumed charge density at the
contact is N0 = 1019 cm−3, so K � d .

Figure 6(a) describes charge (hole) density distribution and figure 6(b) describes the
internal field and internal potential distribution for an applied voltage of VAppl − Vbi = 1 V
(i.e. VAppl = 3–4 V). The solid curves were calculated assuming D = kT

q µ and the dotted
curves were calculated taking into account the effects of the Gaussian DOS (σ = 7kT ) as
discussed in the text regarding figure 3. Figure 6(b) clearly shows that equation (2) does
not hold in the vicinity of the injection interface. Near the interface, the high charge density
(figure 6(a)) causes a negative electric field to be present, which gives rise to a potential barrier
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Calcium (2.8)

Gold  (5.2)
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Magnesium

ITO (4.6-4.8)

Figure 5. Illustrative description of the estimated position of the HOMO (hole) and LUMO
(electron) levels relative to the vacuum level and the corresponding bandgap for a range of polymers.
The top of each bar is the LUMO level, the bottom is the HOMO level and its length is the bandgap.
For reference the work function of some contact materials is also shown.

that peaks at xmax ∼ 10 nm (15 nm for dotted line) away from the interface. Beyond this point
the electric field follows a square-root dependence E ∝ √

x − xmax as would be expected from
equation (2). Namely, if we define the vicinity of the interface as part of the contact then the
SCL relations apply for the entire bulk of the device. This lumping procedure is similar to that
performed in the context of thermionic emission over the contact barrier in the presence of the
image force [42] where the region until the potential maximum is lumped with the contact.

The remaining question, in this context, is what information is lost during this lumping
procedure or how valid is this procedure? It is clear that for the devices the SCL theory was
developed for, which were micrometres thick, a 10–15 nm region was negligible. Also the
low-voltage regime, where xmax is largest, is mainly important for the new high-quality low-
power (voltage) LEDs. For current LEDs the layer thickness is in the range of 70–100 nm,
making xmax account for more than 10% of the total thickness. Moreover, there is a barrier
enhancement that is not accounted for (the tops of the potential curves are 0.125 and 0.34 eV
for the full and dotted curves in figure 6). It is interesting to note that the extra barrier height
depends on the charge density at the interface (N0), which is essential to create the SC effect.
According to equation (7) (or its equivalent), N0 is inversely proportional to the temperature,
making the barrier highest at high temperatures, thus making any activation energy at the
contact effectively smaller. To conclude this paragraph, it still makes sense to use the Mott–
Gurney theory for the general understanding of the device. When more detailed features are
examined, one should keep in mind that this theory neglects a small diffusion-controlled region,
packed with ‘self-trapped’ charges, and an extra (temperature-dependent) barrier. It may be
that this lumping procedure is behind the need to add interface states in the form of traps or
dipoles to better simulate experimental results [43, 44].

3.2. The effect on the time response

Figure 4 shows that the generalized Einstein relation may affect the time response of a system.
Therefore, we also look into the issue of the light turn-on in LEDs and the associated mobility
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Figure 6. Calculated charge density distribution (a) and calculated internal field and potential
distribution (b) for a 100 nm thick single-carrier device. The solid curves were simulated assuming
the classical Einstein relation to hold and the dotted (upper) curves were calculated using the results
in figure 3 for σ = 7kT .

or its extraction procedure. In [11] detailed time-domain analysis of polymer LEDs, within the
standard semiconductor device-model framework, was presented, and guidelines for mobility
extraction procedures were drawn. As stated in [11], the advantage of the time-domain mobility
extraction method, as developed in [11], is that the mobility of the high-density part and the
enhanced spreading of the carrier front are simultaneously observed. Our goal here is to show
that by combining the work by Pinner et al [11] with the work by Roichman and Tessler
[35] there is now significantly less need to resort to non-equilibrium effects to account for
‘anomalous’ spreading or ‘too-high’ diffusion constants. To illustrate the above point, we
have performed calculations similar to those in [11] but including the possible effect of the
width of the Gaussian DOS (figure 3) on the diffusivity parameter. Figure 7(a) shows the
turn-on dynamics of a 60 nm long LED where the assumed mobility values are 1 × 10−4

and 1 × 10−5 cm2 V−1 s−1 for holes and electrons respectively. The net applied voltage
(VAppl − Vbi ) is assumed to be 4 V. All other parameters are as in [11]. The bottom line was
calculated for a negligibly narrow DOS, where the classical Einstein relation holds, and the
upper curve was calculated for a DOS width of 7kT (at room temperature). Using the front end
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(a) (b)(a) (b)

<

<<

Figure 7. (a) Simulated light emission as a response to a step voltage pulse of 4 V applied at t = 0.
The bottom curve was simulated for a material where the classical Einstein relation holds (as for
σ < 1kT ) and the top curve for a material having a Gaussian DOS with a width of σ = 7kT at
room temperature. Note the initial fast rise (hole arriving at the cathode) followed by a longer rise
(electrons penetrate the device). (b) The data as in (a) but the curve values are extracted from the
steady-state value and presented on a log scale [11]. This way the transition between hole- and
electron-dominated responses is clearly visible and is marked by the vertical arrow.

of the distribution (light turn-on) to extract the mobility, the deduced hole mobility is found to
be 1.9 × 10−4 and 2.2 × 10−4 cm2 V−1 s−1 for the narrow-and wide-DOS cases, respectively.
As mentioned above, such results may lead to the conclusion that in the presence of such
effects it is impossible to define the mobility in an unambiguous way. However, as already
pointed out in [11], the turn-on time represents only the carrier front and hence is susceptible
to broadening effects and in any case does not represent the mobility (note the factor of two
difference and the discussion in [11]). In figure 7(b) we plot the electroluminescence, EL(t),
shown in figure 7(a), subtracted from its final value, EL(t → ∞), i.e. EL(t → ∞) − EL(t).
This plot clearly reveals the presence of two distinct regions where loge[EL(t → ∞)−EL(t)]
varies linearly with time. If we apply the method outlined in [11] to extract the time where the
body of the hole distribution has arrived at the cathode (see the vertical arrow in figure 7(b))
we find that the arrival time is identical for the two cases (∼72 ns) and the deduced mobility
is µ = d2

V �t = 1.25 × 10−4 cm2 V−1 s−1, which is very close to the mobility used for both
simulations (the extra 25% is due to the space-charge-enhanced electric field [1] in the bulk,
that is not accounted for in such a simple expression as used here for µ). This calculation
farther establishes that the method of mobility extraction developed in [11] is correct and is
largely immune to fast-carrier effects. Moreover, it strengthens the notion that there is no need
to resort to non-equilibrium effects in order to describe (or extract parameters from) the organic
devices considered here. Other important experimental factors were discussed in detail in [11].
The self-consistent nature of the numerical model also reveals another feature of the DOS-
induced diffusion enhancement. As the charge recombination is of Langevin type [10, 11, 45]
(diffusion controlled), the enhanced diffusion rate enhances the exciton generation rate and
hence the light output is enhanced as well.

4. Conclusions

We have shown that the nano-scale of organic devices as well as their unique electronic
properties (such as Gaussian DOS) require a self-consistent analysis of the injection and



Amorphous organic devices—degenerate semiconductors 9923

transport phenomena. The role of a Gaussian DOS is in making the material degenerate
at all practical charge densities and thus affecting both steady-state and transient properties of
devices of interest. We have also demonstrated that, since one has to use FD statistics and not
the approximated Boltzmann statistics, not only is the transport affected but also the injection
phenomena (effective barrier) are altered. It is believed that by properly accounting for the
material properties (such as DOS) there is less need to introduce extrinsic factors as traps,
defect states at the contact or non-equilibrium to account for the inherent non-linear behaviour
of organic-material-based devices.
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